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The proposed explanations are provided for the one–dimensional diffusion process
with constant drift by using forward Fokker–Planck technique. We present the exact
calculations and numerical evaluation to get the outflow probability in a finite interval,
i.e. first passage time probability density distribution taking into account reflecting
boundary on left hand side and absorbing border on right hand side. This quantity is
calculated from balance equation which follows from conservation of probability. At
first, the initial-boundary-value problem is solved analytically in terms of eigenfunction
expansion which relates to Sturm–Liouville analysis. The results are obtained for all
possible values of drift (positive, zero, negative). As application we get the cumulative
breakdown probability which is used in theory of traffic flow.
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1. INTRODUCTION

Nowadays, the natural sciences deal with objects which have nondetermin-
istic behaviour. Their descriptions can be found in theory of stochastic processes
as a branch of probability theory (Gardiner, 2004). There are different theoretical
approaches for similar investigations using language of stochastic trajectories as
well as probability distributions. The fundamental equation which gives us the
probabilistic description is the Fokker–Planck equation (Gardiner, 2004; Risken,
1996). Our motivations for theoretical investigations in this field are given by
application of the models of many-particles system which are considered in theo-
retical physics, i.e. physics of traffic flow (Mahnke et al., 2005). Here we would
like to find an analytical solution for the special case when the stochastic variable
belongs to a finite interval in terms of probability density distributions as well
as cumulative probability (Redner, 2001). The interval is defined as closed on
left hand side and opened on right hand side. Due to these properties we intro-
duce boundary conditions which determine the behaviour of the solution. Another
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Fig. 1. Schematic picture of the boundary-value problem
showing the probability density p(x, t) in the interval a ≤
x ≤ b.

important analysed quantity is the outflow (or breakdown) probability at right bor-
der which is found from the solution of Fokker–Planck equation by using balance
equation.

Let us consider the initial-boundary-value-problem (shown schematically
in Fig. 1) with constant diffusion coefficient D and constant drift coefficient
v. Our task is to calculate the probability density p(x, t) to find the system in
state x (exact in interval [x; x + dx]) at time moment t . The dynamics of p(x, t)
is given by the forward drift-diffusion-equation as well as initial and boundary
conditions (Gardiner, 2004) by following dynamics

∂p(x, t)

∂t
= −v

∂p(x, t)

∂x
+ D

∂2p(x, t)

∂x2
, (1)

or

∂p(x, t)

∂t
+ ∂j (x, t)

∂x
= 0 (2)

with flux

j (x, t) = v p(x, t) − D
∂p(x, t)

∂x
(3)

with the initial condition

p(x, t = 0) = δ(x − x0), (4)

and two boundary conditions (Gardiner, 2004), i.e. reflecting boundary at x = a

j (x = a, t) = v p(x = a, t) − D
∂p(x, t)

∂x

∣
∣
∣
∣
x=a

= 0, (5)
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and absorbing boundary at x = b

p(x = b, t) = 0. (6)

It is convenient to formulate the drift-diffusion problem in dimensionless
variables. For this purpose we define new variables y and T by

y = x − a

b − a
and T = D

(b − a)2
t. (7)

As a result, the system of partial differential equations (1)–(6) can be rewritten as

∂P (y, T )

∂T
= −�

∂P (y, T )

∂y
+ ∂2P (y, T )

∂y2
, (8)

with initial condition

P (y, T = 0) = δ(y − y0), (9)

reflecting boundary at y = 0

J (y = 0, T ) = �P (y = 0, T ) − ∂P (y, T )

∂y

∣
∣
∣
∣
y=0

= 0, (10)

and absorbing boundary at y = 1

P (y = 1, T ) = 0. (11)

Hence, our problem has only one dimensionless control parameter � = v
D

(b − a)
(scaled drift v which may have positive, zero, or negative values). The parameter
� has the same meaning as Péclet number which has been used in Redner (2001).

The system of equations (8)–(11) will be solved exactly by applying the
forward technique (Gardiner, 2004). The main idea is to obtain the solution of
Fokker–Planck equation and after that the first passage time distribution in terms
of probability density. Both quantities will be presented as eigenfunction expan-
tions. The survival probability and moments of first passage time can be calcu-
lated differently by using backward drift-diffusion equation. These results shown
in Choi and Fox (2002), Fox and Choi (2001), and Redner (2001) do not give the
complete solution of the problem under consideration. Our presented analysis of
the reference system (8)–(11) is the key result in order to study more complicated
situations with nonlinear drift function �(y).

2. SOLUTION IN TERMS OF ORTHOGONAL EIGENFUNCTIONS

To find the solution of the well–defined drift–diffusion problem, first we take
the dimensionless form (8)–(11) and use a transformation to a new function Q by

Q(y, T ) = e− �
2 y P (y, T ). (12)
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This results in a dynamics without first derivative called reduced Fokker–Planck-
equation

∂Q(y, T )

∂T
= −�2

4
Q(y, T ) + ∂2Q(y, T )

∂y2
. (13)

According to (12) the initial condition is transformed to

Q(y, T = 0) = e− �
2 y0 P (y, T = 0), (14)

whereas the reflecting boundary condition at y = 0 becomes

�

2
Q(y = 0, T ) − ∂Q(y, T )

∂y

∣
∣
∣
∣
y=0

= 0, (15)

and the absorbing boundary condition at y = 1 now reads

Q(y = 1, T ) = 0. (16)

The solution of reduced Eq. (13) can be found by the method of separation of
variables (Selvadurai, 2000). Making a separation ansatz Q(y, T ) = χ (T )ψ(y),
we obtain

1

χ (T )

dχ (T )

dT
= −�2

4
+ 1

ψ(y)

d2ψ(y)

dy2
. (17)

Both sides should be equal to a constant. This constant is denoted by −λ, where λ

has the meaning of an eigenvalue. The eigenvalue λ should be real and nonnegative.
Integration of the left hand side gives exponential decay

χ (T ) = χ0 exp{−λ T } (18)

with χ (T = 0) = χ0 and setting χ0 = 1.
Let us now define the dimensionless wave number k as k2 = λ. The right-hand

side of Eq. (17) then transforms into the following wave equation

d2ψ(y)

dy2
+

(

k2 − �2

4

)

ψ(y) = 0. (19)

Further on, we introduce a modified wave number k̃2 = k2 − �2/4. Note that
k̃ = +

√

k2 − �2/4 may be complex (either pure real or pure imaginary).
First we consider the case where k̃ is real. A suitable complex ansatz for the

solution of the wave equation (19) reads

ψ(y) = C∗ exp{+ik̃y} + C exp{−ik̃y} (20)

with complex coefficients C = A/2 + i B/2 and C∗ = A/2 − i B/2 chosen in
such a way to ensure a real solution

ψ(y) = A cos(k̃y) + B sin(k̃y). (21)
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The two boundary conditions (15) and (16) can be used to determine the
modified wave number k̃ and the ratio A/B. The particular solutions are eigen-
functions ψm(y), which form a complete set of orthogonal functions. As the third
condition, we require that these eigenfunctions are normalised

∫ 1

0
ψ2

m(y) dy = 1. (22)

In this case all three parameters k̃, A, and B are defined.
The condition for the left boundary (15) reads

�

2
ψ(y = 0) − dψ(y)

dy

∣
∣
∣
∣
y=0

= 0. (23)

After a substitution by (20) it reduces to

�

2
(C∗ + C) = ik̃ (C∗ − C) (24)

or
�

2
A = k̃B. (25)

The condition for the right boundary (16)

ψ(y = 1) = 0 (26)

gives us

C∗ exp{+ik̃} + C exp{−ik̃} = 0 (27)

or

A cos(k̃) + B sin(k̃) = 0. (28)

By putting both equalities (25) and (28) together and looking for a nontrivial
solution, we arrive at a transcendental equation

i
�

2
(exp{+ik̃} − exp{−ik̃}) = k̃(exp{+ik̃} + exp{−ik̃}) (29)

or
�

2
sin(k̃) + k̃ cos(k̃) = 0, (30)

respectively

tan(k̃) = − 2

�
k̃, (31)

which gives the spectrum of values k̃m with m = 0, 1, 2, . . . (numbered in such a
way that 0 < k̃0 < k̃1 < k̃2 < . . .) and the discrete eigenvalues λm > 0.
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Due to (21) and (28), the eigenfunctions can be written as

ψm(y) = Rm[cos(k̃my) sin(k̃m) − cos(k̃m) sin(k̃my)], (32)

where Rm = Am/ sin(k̃m) = −Bm/ cos(k̃m). Taking into account the identity
sin(α − β) = sin α cos β − cos α sin β, Eq. (32) reduces to

ψm(y) = Rm sin[k̃m(1 − y)]. (33)

The normalisation constant Rm is found by inserting (33) into (22). Calculation of
the normalisation integral by using the transcendental equation (30) gives us

R2
m

∫ 1

0
sin2[k̃m(1 − y)]dy = R2

m

[
1

2
− 1

4k̃m

sin(2k̃m)

]

= R2
m

2

(

1 + �

2

1

k̃2
m + �2/4

)

= 1, (34)

and hence (33) becomes

ψm(y) =
√

2

1 + �
2

1
k̃2
m+�2/4

sin [k̃m(1 − y)] (35)

or

ψm(y) =
√

2

1 + �
2

1
k2
m

sin
[
√

k2
m − �2/4 (1 − y)

]

. (36)

This calculation refers to the case � > −2 where all wave numbers km or k̃m =
√

k2
m − �2/4 are real and positive.

However the smallest or ground–state wave vector k̃0 vanishes when � tends
to −2 from above, and no continuation of this solution exists on the real axis for
� < −2. A purely imaginary solution k̃0 = iκ0 appears instead, where κ0 is real,
see Fig. 2. In this case (for � < −2) a real ground-state eigenfunction ψ0(y) can
be found in the form (20) where C = A/2 + B/2 and C∗ = A/2 − B/2, i.e.,

ψ0(y) = A cosh(κ0y) + B sinh(κ0y). (37)

The transcendental equation for the wave number k̃0 = iκ0 can be written as the
following equation for κ0

�

2
sinh (κ0) + κ0 cosh (κ0) = 0. (38)

As compared to the previous case � > −2, trigonometric functions are re-
placed by the corresponding hyperbolic ones. Similar calculations as before yield

ψ0(y) =
√

− 2

1 + �
2

1
−κ2

0 +�2/4

sinh [κ0(1 − y)] . (39)
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Fig. 2. The wave number k̃0 (� − 2) respectively κ0 (� ≤
− 2) and eigenvalue λ0 for ground state m = 0. The thin
straight line shows the approximation κ0 ≈ −�/2 valid for
large negative � < − 5.

Note that κ0 = −ik̃0 is the imaginary part of k̃0 and κ2
0 = −k̃2

0. As regards other
solutions of (30) called excited states, i.e., those for k̃m with m > 0, nothing spe-
cial happens at � = −2, so that these wave numbers are always real. The situation
for ground state m = 0 at different values of dimensionless drift parameter �

is summerized in Table 1 which presents the solutions κ0 from transcendental
equation (38) together with λ0 = − κ2

0 + �2/4 and k̃0 from transcendental equa-
tion (30) together with eigenvalues λ0 = k̃2

0 + �2/4. Table 2. shows the behaviour
of lowest wave numbers k̃m with m = 0, 1, . . . , 5. The results are plotted in Fig. 3.

In general (for arbitrary �), the eigenfunctions are orthogonal and normalised,
i.e.,

∫ 1

0
ψl(y)ψm(y) dy = δml. (40)
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Fig. 3. The parameter dependence of wave numbers k̃m(�) and eigenvalues λm(�) for ground state
m = 0 and excited states m = 1, 2, 3.
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Table I. The Ground-State Wave Number κ0 (for � ≤ −2) and k̃0 (for � −
2) and Eigenvalue λ0 Depending on the Dimensionless Drift Parameter �

� κ0 λ0 � k̃0 λ0

−9.00 4.499 0.010 −2.00 0.000 1.000
−8.50 4.248 0.015 −1.50 0.845 1.276
−8.00 3.997 0.021 −1.00 1.165 1.608
−7.50 3.745 0.031 −0.50 1.393 2.004
−7.00 3.493 0.045 0.00 1.571 2.468
−6.50 3.240 0.064 0.50 1.715 3.005
−6.00 2.984 0.091 1.00 1.836 3.623
−5.50 2.726 0.128 1.50 1.939 4.325
−5.00 2.464 0.178 2.00 2.028 5.116
−4.50 2.195 0.245 2.50 2.106 5.999
−4.00 1.915 0.333 3.00 2.174 6.979
−3.50 1.617 0.446 3.50 2.235 8.058
−3.00 1.288 0.591 4.00 2.288 9.239
−2.50 0.888 0.774 4.50 2.337 10.525
−2.00 0.000 1.000 5.00 2.381 11.917

Figure 4 shows the ground eigenstate (m = 0) for different parameter values �,
whereas Fig. 5 gives a collection of eigenstate functions (m = 0, 1, . . . , 5) for
� = −5.0 and � = 3.0.

In the following, explicit formulae (where ψm(y) is specified) are written for
the case � > −2.

In order to construct the time-dependent solution for Q(y, t), which fulfills
the initial condition, we consider the superposition of all particular solutions with
different eigenvalues λm

Q(y, T ) =
∞

∑

m=0

Cme−λmT ψm(y). (41)

Table II. The Wave Numbers k̃m (m = 0, 1, . . . , 5) Depending on the Dimensionless Drift Parameter
�

� −10.0 −5.0 −2.0 −1.0 0.0 1.0 2.0 5.0 10.0

m = 0 4.999 2.464 0.000 1.165 1.571 1.836 2.028 2.381 2.653
m = 1 3.790 4.172 4.493 4.604 4.712 4.816 4.913 5.163 5.454
m = 2 7.250 7.533 7.725 7.789 7.854 7.917 7.979 8.151 8.391
m = 3 10.553 10.767 10.904 10.949 10.995 11.040 11.085 11.214 11.408
m = 4 13.789 13.959 14.066 14.101 14.137 14.172 14.207 14.310 14.469
m = 5 16.992 17.133 17.220 17.249 17.279 17.308 17.336 17.421 17.556
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Fig. 4. The eigenfunction ψ0(y) for different values of control parameter �.

By inserting the initial condition

P (y, T = 0) = e
�
2 yQ(y, T = 0) = δ(y − y0) (42)

into (41) we obtain

∞
∑

m=0

Cmψm(y) = e− �
2 yδ(y − y0). (43)

Now we expand the right hand side of this equation by using the basis of orthonor-
malised eigenfunctions (35) and identify Cm with the corresponding coefficient at
ψm, i.e.,

Cm =
∫

e
�
2 yδ(y − y0)ψmdy = e− �

2 y0ψm(y0). (44)
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Fig. 5. The eigenfunctions ψm(y) for m = 0, 1, 2, 3 and for � = −5.0 (left) and � = 3.0 (right).
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This allows us to write the solution for P (y, T ) as

P (y, T ) = e
�
2 (y−y0)

∞
∑

m=0

e−λmT ψm(y0)ψm(y), (45)

with eigenfunctions (35) and (39) of ground state (m = 0)

ψ0(y) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√

2

1 + �
2

1
k̃2

0+�2/4

sin[k̃0(1 − y)], � > − 2

√
3 (1 − y) , � = − 2

√

− 2

1 + �
2

1
− κ2

0 +�2/4

sinh [κ0(1 − y)] , � < − 2

(46)

and all other eigenfunctions (35)

ψm(y) =
√

2

1 + �
2

1
k̃2
m+�2/4

sin[k̃m(1 − y)] m = 1, 2, . . . . (47)

The eigenvalue of ground state (m = 0) is given by

λ0 =

⎧

⎪⎪⎨

⎪⎪⎩

k̃2
0 + �2/4 , � > − 2

1 , � = − 2

− κ2
0 + �2/4 , � < − 2

(48)

and all others are

λm = k̃2
m + �2/4 m = 1, 2, . . . , (49)

where the wave numbers are calculated from transcendental Eq. (31)

k̃0 : tan k̃0 = − 2

�
k̃0 � > − 2 (50)

κ0 : tanh κ0 = − 2

�
κ0 � < − 2 (51)

k̃m : tan k̃m = − 2

�
k̃m m = 1, 2, . . . . (52)

The set of Fig. 6 illustrates the time evolution of probability density (45) choosing
different parameter values �.
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Fig. 6. The solution of drift-diffusion Fokker–Planck equation with initial condition y0 = 0.5 for
different values of the control parameter �, i.e. � = −5.0 (top left), � = − 2.5 (top right), � = 0.1
(bottom left), � = 3.0 (bottom right).

3. FIRST PASSAGE TIME PROBABILITY DENSITY

It has been shown in previous sections that the probability density P (y, T )
is not normalized under given restrictions, i.e. reflected at y = 0 and absorbed at
y = 1. Due to that fact, let us apply here the balance equation in the open system
given in dimensionless variables by

P(T , y = 1) = − ∂

∂T

∫ 1

0
P (y, T ) dy (53)

which relates the probability P (y, T ) that the system is still in a state y ∈ [0, 1]
with the probability flux P(T , y = 1) out of this interval at the right absorbing
boundary y = 1 at time moment T . Hence, P(T , y = 1) is the first passage time
probability density (Choi and Fox, 2002; Fox and Choi, 2001; Redner, 2001). It
can be calculated by using obtained results of previous section. The first passage
time probability density distributionP (breakdown probability density) depending
on � reads as follows
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Fig. 7. The first passage time probability density distribution P(T , y = 1) for � < −2 (left) and
� > −2 (right).

1. � > − 2

P(T , y = 1) = 2e
�
2 (1−y0)

∞
∑

m=0

e−(k̃2
m+�2/4)T

1 + �
2

1
k̃2
m+�2/4

k̃m sin[k̃m(1 − y0)] (54)

2. � = − 2

P(T , y = 1) = e− (1−y0)

[

3 (1 − y0) e− T

+ 2
∞

∑

m=1

e
−
(

k̃2
m+1

)

T

1 − 1
k̃2
m+1

k̃m sin[k̃m(1 − y0)]

⎤

⎦ (55)

3. � < − 2

P(T , y = 1) = 2e
�
2 (1−y0)

×
⎡

⎣− e
−
(

− κ2
0 +�2/4

)

T

1 + �
2

1
− κ2

0 +�2/4

κ0 sinh[κ0(1 − y0)]

+
∞

∑

m=1

e
−
(

k̃2
m+�2/4

)

T

1 + �
2

1
k̃2
m+�2/4

k̃m sin[k̃m(1 − y0)]

⎤

⎦ (56)

The outflow distribution P(T , y = 1) is shown in Fig. 7 (with different values of
dimensionless drift �) as well as in Fig. 8 (with different values of initial condition
y0).



1554 Hinkel and Mahnke

0 0.02 0.04 0.06 0.08 0.1
T

0

0.5

1

1.5

2

P
(T

, y
 =

 1
)

y
0
 = 0.0

y
0
 = 0.3

y
0
 = 0.5

y
0
 = 0.6

Fig. 8. Short time behaviour of first passage time probability density
distribution P(T , y = 1) for different initial conditions 0 ≤ y0 ≤ 1
showing time lag.

4. CUMULATIVE BREAKDOWN PROBABILITY

The probability that the absorbing boundary y = 1 is reached within certain
observation time interval 0 ≤ T ≤ Tobs is given by the cumulative (breakdown)
probability

W (�, T = Tobs) =
∫ Tobs

0
P(T , y = 1) dT (57)

withP(T , y = 1) from (53). For Tobs → ∞ we have W → 1. Generally, we obtain

1. � > − 2

W (�, Tobs) = 2e
�
2 (1−y0)

∞
∑

m=0

1 − e
−
(

k̃2
m+�2/4

)

Tobs

k̃2
m + �2/4 + �/2

k̃m sin[k̃m(1 − y0)]

(58)
2. � = − 2

W (�, Tobs) = e− (1−y0)

[

3 (1 − e−Tobs )(1 − y0)

+2
∞

∑

m=1

1 − e
−
(

k̃2
m+1

)

Tobs

k̃m

sin[k̃m(1 − y0)]

]

. (59)
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Fig. 9. The probability W (�, Tobs) (57) as function of observation time Tobs with fixed � (left)
and vice versa (right).

3. � < − 2

W (�, Tobs) = 2 e
�
2 (1−y0)

×
[

− 1 − e−(−κ2
0 +�2/4)Tobs

− κ2
0 + �2/4 + �/2

κ0 sinh [κ0(1 − y0)]

+
∞

∑

m=1

1 − e−(k̃2
m+�2/4)Tobs

k̃2
m + �2/4 + �/2

k̃m sin[k̃m(1 − y0)]

]

(60)

Figure 9 shows W (�, Tobs) as a function of observation time Tobs (left) as well as
parameter dependence � (right).

5. LIMIT CASE FOR LARGE POSITIVE VALUES
OF THE CONTROL PARAMETER

Consider parameter limit � → +∞ which corresponds either to large posi-
tive drift v and/or large interval b − a, or to a small diffusion coefficient D. In this
case, for a given m, the solution of the transcendental equation can be found in the
form k̃m = π (m + 1) − εm, where εm is small and positive. From the periodicity
property we obtain

cos k̃m = cos(π (m + 1) − εm) = −(−1)m cos(εm) = −(−1)m + O
(

ε2
m

)

sin k̃m = sin(π (m + 1) − εm) = (−1)m sin(εm) = (−1)mεm + O
(

ε3
m

)

.
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By inserting this into the transcendental Eq. (30), we obtain

εm = 2

�
π (m + 1) + O(�−2), (61)

sin(k̃m) = 2

�
(−1)mπ (m + 1) + O(�−2). (62)

In this approximation the normalisation integral for large � and the initial condition
y0 → 0 can be written as

I =
∫ ∞

0
P(T , y = 1) dT = 2e�/2

∞
∑

m=0

k̃m sin(k̃m)

λm + �/2

	 e�/2
∞

∑

m=1

−4

�

(−1)m(πm)2

π2m2 + �2/4
= e�/2

∞
∑

m=−∞

−2

�

(−1)m(πm)2

π2m2 + �2/4
. (63)

Further on we set (−1)m = eiπm and, in a continuum approximation, replace the
sum by the integral

I 	 e�/2
∫ ∞

−∞

−2

�

eiπm(πm)2

π2m2 + �2/4
dm. (64)

Now we make an integration contour in the complex plane, closing it in the upper
plane (Im m > 0) at infinity where |eiπm| is exponentially small. According to the
residue theorem, it yields

I = 2πi
∑

i

Res(mi) = 2π iRes(m0), (65)

where m0 = i�
2π

is the location of the pole in the upper plane, found as a root of
the equation π2m2 + �2/4 = 0. According to the well-known rule, the residue
is calculated by setting m = m0 in the enumerator of (64) and replacing the
denominator with its derivative at m = m0. It gives the desired result I = 1, i.e.,
the considered approximation gives correct normalisation of outflow probability
density P(T , y = 1) at the right boundary.

The probability distribution function P (y, T ) given by (45) can also be
calculated in such a continuum approximation. In this case the increment of
wave numbers is

�k̃m = k̃m+1 − k̃m = π + εm − εm+1 	 π

(

1 − 2

�

)

	 π

1 + 2/�
. (66)

Note that in this approximation for � → ∞ the normalisation constant Rm in (34)
is related to the increment �k̃ via

R2
m = 2

1 + �
2

1
k̃2
m+�2/4

	 2

1 + 2/�
	 2

π
�k̃m. (67)
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Fig. 10. Comparison of probability density P (y, T ) in drift–
diffusion-dynamics with finite boundaries for two time moments.
Parameter value is � = 3.0; initial condition is y0 = 0.5. The
solid lines represent the exact result (45); dotted lines display the
approximation (70).

Hence, the Eq. (45) for the probability density can be written as

P (y, T ) = 2e
�
2 (y−y0)

∞
∑

m=0

R2
me−λmT sin[k̃m(1 − y0)] sin[k̃m(1 − y)]

	 2

π
e

�
2 (y−y0)

∞
∑

m=0

e
−
(

k̃2
m+�2/4

)

T sin[k̃m(1 − y0)] sin[k̃m(1 − y)]�k̃m

. (68)

In the continuum approximation we replace the sum by the integral

P (y, T ) 	 2

π
e

�
2 (y−y0)

∫ ∞

0
e−(k̃2+�2/4)T sin[k̃(1 − y0)] sin[k̃(1 − y)] dk̃

= 1

π
e

�
2 (y−y0)

∫ ∞

0
e−(k̃2+�2/4)T (cos[k̃(y − y0)] − cos[k̃(2 − y − y0)])dk̃

. (69)

In the latter transformation we have used the identity sin α sin β =
1
2 (cos(α − β) − cos(α + β)). The resulting known integrals yield

P (y, T ) 	 1√
4πT

e
�
2

(

y−y0− �
2 T

) [

e− (y−y0)2

4T − e− (2−y−y0)2

4T

]

. (70)

The approximation (70) is shown in Fig. 10. For short enough times 4T 

(2 − y − y0)2 the second term is very small. Neglecting this term, Eq. (70) reduces
to the known exact solution for natural boundary conditions.
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Based on (70), it is easy to calculate the probability flux

J (y, T ) = �P (y, T ) − ∂

∂y
P (y, T ) (71)

and the first passage time distribution P(T ) = J (y = 1, T ) which takes a partic-
ularly simple form

P(T ) = 1 − y0√
4πT 3

e− (1−y0−�T )2

4T . (72)

The cumulative breakdown probability (57) is then

W (�, T = Tobs) =
∫ Tobs

0

1 − y0√
4πT 3

e− (1−y0−�T )2

4T dT . (73)

6. RELATIONSHIP TO STURM-LIOUVILLE THEORY

The particular drift-diffusion-problem over a finite interval with reflecting
(left) and absorbing (right) boundaries belongs to the following general math-
ematical theory named after Jacques Charles Francois Sturm (1803–1855) and
Joseph Liouville (1809–1882).

The classical Sturm–Liouville theory considers a real second-order linear
differential equation of the form (Zettl, 2005)

− d

dx

[

p(x)
dψ

dx

]

+ q(x)ψ = λ w(x)ψ (74)

together with boundary conditions at the ends of interval [a, b] given by

α1ψ(x = a) + α2
dψ

dx

∣
∣
∣
∣
x=a

= 0, (75)

β1ψ(x = b) + β2
dψ

dx

∣
∣
∣
∣
x=b

= 0. (76)

The particular functions p(x), q(x), w(x) are real and continuous on the
finite interval [a, b] together with specified values at the boundaries. The aim of
the Sturm–Liouville problem is to find the values of λ (called eigenvalues λn) for
which there exist non-trivial solutions of the differential Eq. (74) satisfying the
boundary conditions (75) and (76). The corresponding solutions (for such λn) are
called eigenfunctions ψn(x) of the problem.

Defining the Sturm–Liouville differential operator over the unit interval [0, 1]
by

Lψ = − d

dx

[

p(x)
dψ

dx

]

+ q(x)ψ (77)
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and putting the weight w(x) to unity (w = 1) the general equation (74) can pre-
cisely be written as eigenvalue problem

Lψ = λψ (78)

with boundary conditions (75)(a = 0) and (76) (b = 1) written as

B0ψ = 0 B1ψ = 0. (79)

Assuming a differentiable positive function p(x) > 0 the Sturm–Liouville
operator is called regular and it is self-adjoint to fulfil

∫ 1

0
Lψ1 · ψ2 =

∫ 1

0
ψ1 · Lψ2. (80)

Any self–adjoint operator has real nonnegative eigenvalues λ0 < λ1 < · · · < λn <

· · · → ∞. The corresponding eigenfunctions ψn(x) have exact n zeros in (0, 1)
and form an orthogonal set

∫ 1

0
ψn(x)ψm(x) dx = δmn. (81)

The eigenvalues λn of the classical Sturm–Liouville problem (74) with posi-
tive function p(x) > 0 as well as positive weight function w(x) > 0 together with
separated boundary conditions (75) and (76) can be calculated by the following
expression

λn

∫ b

a

ψn(x)2w(x)dx =
∫ b

a

[p(x) (dψn(x)/dx)2 + q(x)ψn(x)2]dx

− ∣
∣p(x)ψn(x) (dψn(x)/dx)

∣
∣
b

a
. (82)

The eigenfunctions are mutually orthogonal (m �= n) and usually normalized
(m = n)

∫ b

a

ψn(x)ψm(x)w(x) dx = δmn (83)

known as orthogonality relation (similar to (81).
Comming back to the original drift-diffusion problem written in dimension-

less variables over unit interval 0 ≤ y ≤ 1 and recalling (17 the separation constant
λ appears in the following differential equation

−d2ψ(y)

dy2
+ �2

4
ψ(y) = λψ(y) (84)

which can be related to the regular Sturm–Liouville eigenvalue problem via p(y) =
1 > 0; w(y) = 1 > 0 and q(y) = �2/4.
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The boundary conditions given by (23) and (26) can be expressed as

�

2
· ψ(y = 0) + (−1) · dψ

dy

∣
∣
∣
∣
y=0

= 0, (85)

1 · ψ(y = 1) + 0 · dψ

dy

∣
∣
∣
∣
y=1

= 0 (86)

in agreement with (75) and (76).
The up-to-now unknown separation constant λ has a spectrum of real positive

eigenvalues which can be calculated using (82) from

λn =
∫ 1

0

[(
dψn(y)

dy

)2

+ �2

4
ψn(y)2

]

dx −
∣
∣
∣
∣
ψn(y)

dψn(y)

dy

∣
∣
∣
∣

1

0

(87)

taking into account normalized orthogonal eigenfunction (83)
∫ 1

0
ψn(y)ψm(y) dy = δmn. (88)

7. CONCLUSIONS

The presented paper shows the analytical method how to solve drift-diffusion
initial-boundary-value problem for the case of reflecting and absorbing bound-
aries (Choi and Fox, 2002; Fox and Choi, 2001; Linetsky, 2004; Redner, 2001;
Linetsky, 2005). On the basis of Sturm–Liouville theory, the set of eigenvalues
with corresponding eigenfunctions has been found. Here we have paid our atten-
tion to wave number calculations from transcendental equations. The equations
have been solved numerically by Newton method. The main problem which has
been solved was the dependence of obtained results on drift value, i.e. different
cases of control parameter � < −2, � = −2 and � > −2. First case of � < −2
corresponds to the situation when it is difficult and probably impossible, with
significant small probability and for long times only, to leave the interval due
to the large negative value of drift. The case of � = −2 has been considered
as limit case and the corresponding solution has been found. The opposite case
of � > −2 shows the usual situation when the system reaches the right border
relatively fast. As application, the first passage time distribution as well as the
cumulative probability have been calculated. The case of large positive values of
� has been investigated in detail and has been obtained as approximation.
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